Pricing complexity options
نویسندگان
چکیده
We consider options that pay the complexity deficiency of a sequence of up and down ticks of a stock upon exercise. We study the price of European and American versions of this option numerically for automatic complexity, and theoretically for Kolmogorov complexity. We also consider run complexity, which is a restricted form of automatic complexity.
منابع مشابه
On the existence of an optimal regression complexity in the Least-Squares Monte Carlo (LSM) framework for options pricing
In this paper, we illustrate how to value American-style options using the Least-Squares Monte Carlo (LSM) approach proposed by Longstaff and Schwartz (2001) and investigate whether there exists an optimal regression complexity in the LSM framework for options pricing. In particular, we use the smoothing spline in the regression step, which allows us to control the regression complexity on a co...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملDeveloping Efficient Option Pricing Algorithms by Combinatorial Techniques
How to price options efficiently and accurately is an important research problem. Options can be priced by the lattice model. Although the pricing results converge to the theoretical option value, the prices do not converge monotonically. Worse, for some options like barrier-options, the prices can oscillate significantly. Thus, large computational time may be required to achieve acceptable acc...
متن کاملFast binomial procedures for pricing Parisian/ParAsian options
The discrete procedures for pricing Parisian/ParAsian options depend, in general, by three dimensions: time, space, time spent over the barrier. Here we present some combinatorial and lattice procedures which reduce the computational complexity to second order. In the European case the reduction was already given by Lyuu-Wu [11] and Li-Zhao [10], in this paper we present a more efficient proced...
متن کاملPRICING STOCK OPTIONS USING FUZZY SETS
We use the basic binomial option pricing method but allow someor all the parameters in the model to be uncertain and model this uncertaintyusing fuzzy numbers. We show that with the fuzzy model we can, with areasonably small number of steps, consider almost all possible future stockprices; whereas the crisp model can consider only n + 1 prices after n steps.
متن کاملA Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options
This paper develops algorithms for the pricing of discretely sampled barrier, lookback and hindsight options and discretely exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently using the double-exponential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithmic Finance
دوره 4 شماره
صفحات -
تاریخ انتشار 2015